
Windows PowerShell Quick Reference

How to Read a Text File
To read the contents of a text file into a variable, call the
Get-Content cmdlet followed by the path to the text file:

$a = Get-Content C:\Scripts\Test.txt

Each line in the file ends up as an item in the array $a. If
you want to access a single line in the file you can simply
specify the index number corresponding to that line:

$a[0]

This command echoes back the last line in $a:

$a[-1]

Bonus. To determine the number of lines, words, and
characters in a text file use this command:

get-content c:\scripts\test.txt |
measure-object -line -word -character

How to Write to a Text File
To save data to a text file use the Out-File cmdlet:

Get-Process | Out-File C:\Scripts\Test.txt

To append data to an existing file, add the –append
parameter:

Get-Process | Out-File C:\Test.txt –append

You can also use the MS-DOS redirection characters (>
for write, >> for append) when using Windows
PowerShell. This command writes data to the file
C:\Scripts\Test.txt:

Get-Process > C:\Scripts\Test.txt

Another option is to use the Export-CSV cmdlet to save
data as a comma-separated-values file:

Get-Process | Export-CSV C:\Test.csv

How to Print Data
To print data to the default printer use the Out-Printer
cmdlet:

Get-Process | Out-Printer

How to Write Conditional Statements
To write an If statement use code similar to this:

$a = "white"
if ($a -eq "red")
 {"The color is red."}
elseif ($a -eq "white")
 {"The color is white."}
else
 {"The color is blue."}

Instead of writing a series of If statements you can use a
Switch statement, which is equivalent to VBScript’s
Select Case statement:

$a = 2
switch ($a)
 {
 1 {"The color is red."}
 2 {"The color is blue."}
 3 {"The color is green."}
 4 {"The color is yellow."}
 default {"Other."}
 }

How to Write For and For Each Loops
To write a For statement use code similar to this:

for ($a = 1; $a -le 10; $a++) {$a}

By comparison, a For Each statement might look like
this:

foreach ($i in get-childitem c:\scripts)
{$i.extension}

How to Write Do Loops
To write a Do loop use code like the following, replacing
the code between the curly braces with the code to be
executed on each iteration of the loop. Oh: and replacing
the code inside the parentheses with the loop condition:

$a = 1
do {$a; $a++}
while ($a -lt 10)

$a = 1
do {$a; $a++}
until ($a –gt 10)

How to Access Arguments
To access command-line arguments used when starting
a script use the automatic variable $args. You can cycle
through the individual arguments in the $args collection
by using code similar to this:

foreach ($i in $args) {$i}

To access a particular argument use the collection index
number, with 0 representing the first item in the
collection, 1 representing the second item, etc:

$args[0]

You can reference the last item in a collection by using
the index number –1:

$args[-1]

How to Solicit Input
To solicit input from a user, use the Read-Host cmdlet,
followed by the prompt to be displayed:

$a = Read-Host "Please enter your name"

How to Insert Line Breaks
To insert a line break into a Windows PowerShell script
use the backtick (`) :

Write-Host `
 "This is a continuation of the line."

You can also break a line at the pipe separator (|)
character (assuming your line uses the pipeline):

Get-ChildItem C:\Scripts |
 Sort-Object Length –Descending

How to Use Colored Text
To display text in a different color use the Write-Host
cmdlet and specify a foreground color:

Write-Host "test" -foregroundcolor "green"

You can also specify a different background color:

Write-Host "test" -backgroundcolor "red"

How to Make Comparisons
Windows PowerShell cmdlets (like Where-Object) use a
special set of comparison operators, including those
shown in the following table.

Each of these operators can be made case sensitive by
adding a c immediately after the hyphen. For example,
-ceq represents the case-sensitive equals operator; -clt
is the case-sensitive less than operator.

-lt Less than
-le Less than or equal to
-gt Greater than
-ge Greater than or equal to
-eq Equal to
-ne Not equal to
-like Like (uses wildcards for

matching)
-notlike Not like (uses wildcards for

matching)

How to Insert a Paragraph Return
To insert a paragraph return in your output use the
newline character `n:

Write-Host "Line 1.`nLine 2."

How to Write in Reverse Video
To echo a message in reverse video use the Write-
Warning cmdlet:

Write-Warning "An error has occurred."

Windows PowerShell Quick Reference

How to Create Multi-Command Lines
To put multiple commands on a single line, separate
those commands using a semicolon:

$a = 1,2,3,4,5; $b = $a[2]; Write-Host $b

How to Insert Comments
To insert a comment, use the pound sign (#):

This is a comment, not a line to be run.

How to Get Help
To get complete help information for a Windows
PowerShell cmdlet, use the Get-Help cmdlet along with
the –full parameter. For example, to view the help
information for the Get-Process cmdlet type the
following:

Get-Help Get-Process –full

To view the example commands for a cmdlet use the
–examples parameter:

Get-Help Get-Process –examples

If you can’t remember the exact name for a cmdlet use
Get-Command to retrieve a list of all the cmdlets
available to you:

Get-Command

For a list of available aliases, use the Get-Alias cmdlet:

Get-Alias

How to Copy and Paste
To enable simple copying and pasting in the Windows
PowerShell console do the following:

Start Windows PowerShell, then click the icon in the

upper left-hand corner and choose Properties.
In the Windows PowerShell Properties dialog box, on

the Options tab, select QuickEdit Mode and then
click OK.

To copy text in the console window select the text and
then press ENTER. To paste text into the window click
the right mouse button.

How to Run a Script
To run a script from within Windows PowerShell, type the
full path to the script (or type the script name if the script
is stored in a folder that is part of your Windows path):

C:\Scripts\Test.ps1

If the path name includes blank spaces you must preface
the path with an ampersand and enclose the path in
double quotes. For example:

&"C:\Scripts\My Scripts\test.ps1"

From outside Windows PowerShell (e.g., from the Run
dialog box or from a Cmd.exe window) you must call
Windows PowerShell and then pass the script path as an
argument to that call:

powershell.exe –noexit C:\Scripts\Test.ps1

The -noexit parameter ensures that the PowerShell
window remains open after the script finishes running. How to “Interrogate” an Object

To get information about the properties and methods of
an object retrieve an instance of that object and then
“pipe” the object to the Get-Member cmdlet. For
example, this command returns the properties and
methods available when working with processes:

Get-Process | Get-Member

How to Change Security Settings
To run scripts from within Windows PowerShell you will
need to change your security settings; by default,
PowerShell only runs scripts signed by a trusted
authority. To enable PowerShell to run all locally-created
scripts (regardless of whether or not they have been
signed) use the following command:

Set-ExecutionPolicy RemoteSigned

How to Clear the Console Window
To clear the PowerShell window, use the Clear-Host
function (or its alias, cls).

Windows PowerShell Quick Reference

How to Get More Information

For more information on writing
Windows PowerShell scripts visit the
TechNet Script Center at
http://technet.microsoft.com/en-
us/scriptcenter/dd742419.aspx.

How to Create a COM Object
To work with a COM object use the New-Object cmdlet
followed by the –comobject parameter and the
appropriate ProgID:

$a = New-Object -comobject `
 "Excel.Application"
$a.Visible = $True

How to Work with WMI
To get computer information using WMI call the Get-
WMIObject cmdlet followed by the class name:

Get-WMIObject Win32_BIOS

If the class you are interested in does not reside in the
cimv2 namespace simply include the –namespace
parameter:

Get-WMIObject SystemRestore `
 -namespace root\default

To access data on another computer use the
–computername parameter:

Get-WMIObject Win32_BIOS `
 –computername atl-ws-01

To limit returned data, use a WQL query and the –query
parameter:

Get-WMIObject -query `
 "Select * From Win32_Service `
 Where State = 'Stopped'"

How to Select Properties
To work with or display specified properties of a
collection, pipe the returned results to the Select-Object
cmdlet:

Get-Process | Select-Object Name, Company

How to Bind to Local Accounts
To bind to a local account, use the WinNT provider:

$a = [adsi] "WinNT://atl-ws-01/kenmyer"
$a.FullName

How to Create a .NET Object
To instantiate and use a .NET Framework object enclose
the class name in square brackets, then separate the
class name and the method using a pair of colons:

[system.Net.DNS]::resolve("207.46.198.30")

To create an object reference to a .NET Framework
object use the New-Object cmdlet:

$a = new-object `
-type system.diagnostics.eventlog `
-argumentlist system

Note. This is a cursory overview of working with .NET.
The two techniques shown here will not necessarily work
with all .NET classes.

How to Bind to Active Directory
To bind to an Active Directory account use the LDAP
provider:

$a = [adsi] "LDAP://cn=kenmyer, `
 ou=Finance, dc=fabrikam, dc=com"

Listing all the objects in an OU is a little more
complicated; however, one relatively easy way to
accomplish this task is to bind to the OU and then use
the PSBase_GetChildren() method to retrieve a
collection of items stored in that OU:

$objOU = [ADSI]`
"LDAP://ou=Finance,dc=fabrikam,dc=com"
$users = $objOU.PSBase.Get_Children()
$users | Select-Object displayName

How to Sort Data
To sort data returned by Windows PowerShell simply
pipe that data to the Sort-Object cmdlet, specifying the
property you want to sort by:

Get-Process | Sort-Object ID

You can also add the –descending or -ascending
parameters to specify a sort order:

Get-Process | Sort-Object ID –descending

You can even sort by multiple properties:

Get-Process | Sort-Object ProcessName, ID

Windows PowerShell Quick Reference

